
www.thoughtworks-studios.com

The Agile
Maturity Model
A
Releasing Software

pplied to Building and

By J | September 2009ez Humble and Rolf Russell

Copyright 2011 ThoughtWorks Inc. All rights reserved | www.thoughtworks-studios.com

We start with a discussion of the Agile Maturity Model, move on to building and releasing
software, present the maturity model, and then describe how to use it.

The Agile Maturity Model
The Capability Maturity Model Integrated (CMMI®) is intended to institutionalize a collection of pre-defined delivery
practices and ensure their consistent execution so as to increase the probability that a team or organization can
successfully complete projects. The definition of “successful” includes completing the project on time and in budget.

In contrast, the Agile Maturity Model is an internal tool used at ThoughtWorks and other organizations to help
organizations understand their current practices and work toward improving them with the goal of increasing ability
to respond to changing business conditions and better harnessing innovation.

The model used here is both a specialization and an adaptation of the Agile Maturity Model. Although we share the
same goals as the Agile Maturity Model, we have changed the definition of the levels, so as to apply it to the practices
related to building and releasing software.

Building and Releasing Software
The delivery of working software involves several activities besides development. In particular, software must be
turned into a form suitable for installation in its target environment, subjected to various forms of testing, and then
be released to users.

Our assertion is that this process should be performed continuously, rather than as a series of phases, with the aim of
creating a fully automated, reliable, predictable, and visible process with well-understood, quantifiable risk.

The Ideal State
Ideally, each change made to your application, its environment, or its configuration should go through an automated
process. This process should create binaries, run automated tests against them, and inform all relevant parties of the
results of this process. We call such a system the deployment pipeline.

It should also be possible for developers, testers, and operations people to have not only visibility into this process,
but also to be able to self-service processes such as deployments to testing and environments and the release of
applications at the push of a button. Such processes also form a part of the deployment pipeline.

In this paper, we present a maturity model for building and releasing software.
This model is designed to serve several purposes:
nTo provide a structure for assessing your team or organizational capabilities in building and releasing software
nTo provide an approach for planning and executing improvements to existing practices

The Maturity Model
In order to achieve our ideal, it is essential to cover all parts of the process of building, deploying, testing, and
releasing software.

Build management and continuous integration are concerned with creating and maintaining an automated
process that builds your application and runs tests on every change and then provides feedback to the
whole team on the process.

Environments consist of the entire stack your application requires to work:
hardware, infrastructure, networking, application stacks, external services, and their configuration.

Release management is defined by Forrester as “the definition, support, and enforcement of processes for
preparing software for deployment to production.” We have added considerations around compliance to this
area, since conformance to regulatory environments is often one of the strongest constraints on release
management.

Testing, whether through automated tests or manual processes such as exploratory testing and user
acceptance testing is designed to ensure that software contains as few defects as possible as well as
conforms to non-functional requirements. We have focused on the areas of testing that are most relevant to
building and releasing software.

Finally, data management (usually, but not always, in the context of relational databases) forms an essential
part of the deployment and release process, since it is a frequent source of problems when releasing or
upgrading software.

To ensure each part of the process is given due attention, we have divided the model into five sections.

Copyright 2011 ThoughtWorks Inc. All rights reserved | www.thoughtworks-studios.com

Thoughtworker
Typewritten Text

How to Use The Maturity Model

Copyright 2011 ThoughtWorks Inc. All rights reserved | www.thoughtworks-studios.com

The ultimate aim for your organization is to improve. The outcomes you want are:
nReduced cycle time, so you can respond faster to changing business requirements and increase revenue
nReduced defects, so you can improve your reputation and spend less on support
nIncreased predictability of your software delivery lifecycle to make planning more effective
nThe ability to adopt and maintain an attitude of compliance to any regulatory regime you are subject to
nThe ability to determine and manage software delivery risks effectively
nReduced costs due to better risk management and fewer issues delivering software

We believe that using this maturity model can help you achieve all of these outcomes.

1Here are the steps to use the model, based on the Deming cycle: plan, do, check, act .

1. Identify where your organization lies on the model. You may find that different parts of your organization
achieve different levels on each of the different categories.

2. Choose what to focus on. You should work out what the possible improvements you could implement are,
how much they will cost, and what benefit they will deliver. You then choose a few improvements you
could make and decide how to implement those changes. You should set acceptance criteria to define the
results you are expecting to see, so you can decide if the changes were successful.

3. Implement the changes. First, plan how to implement the changes. You might decide to start with a proof of
concept. If so, choose a part of your organization that is really suffering—these people will have the best
motivation to implement change, and it is there that you will see the most dramatic change. Then, of
course, you have to execute your plan.

4. Check if the changes you implemented had the desired effect. Use the acceptance criteria you created. Hold
a retrospective to find out how well the changes were executed.

5. Repeat these steps, building upon your knowledge. Roll out more improvements incrementally, and roll
them out across your whole organization.

Organizational change is hard, and a detailed guide is beyond the scope of this paper. The most important advice we
can offer is to implement change incrementally. If you try and go from level one to level five across your whole
organization in one step, you will fail. Changing large organizations can take several years.

Finding the changes that will deliver the most value and working out how to execute them should be treated
scientifically: come up with a hypothesis and then test it. Repeat and learn in the process. No matter how good you
are, it is always possible to improve. If something doesn't work, don't abandon the process: try something else.

About ThoughtWorks Studios

Copyright 2011 ThoughtWorks Inc. All rights reserved | www.thoughtworks-studios.com

ThoughtWorks Studios is a global leader in Agile software development tools, and its products can be found in development
organizations seeking sustainable Agile adoption. The company's Adaptive Application Lifecycle Management (ALM) solution
provides a platform for managing all aspects of software development, from requirements definition and project management
to test automation, quality assurance, and release management. Adaptive ALM comprises the integration of three products:
Mingle (Agile project management), Twist (Agile testing), and Go (Agile release management). Each tool is available as part of a
complete lifecycle solution or as a standalone product. Backed by more than 17 years of experience in Agile delivery,
ThoughtWorks Studios is the product division of ThoughtWorks Inc., a pioneer in Agile development. ThoughtWorks Studios has
over 400 customers in more than 20 countries, including 3M, Honeywell, BBC, eBay, Barclays, Vodafone, McGraw-Hill, and
Rackspace. The company headquarters is located in San Francisco and Bangalore, with offices in London and select cities in
Europe, Asia, and Australia. For more information, visit www.thoughtworks-studios.com.

ThoughtWorks Studios

CALL: 512-467-4956 (sales)
 415-238-6497 (main)

EMAIL: studios@thoughtworks.com
WEB: www.thoughtworks-studios.com

SAN FRANCISCO | CHICAGO | LONDON | BANGALORE | BEIJING | MELBOURNE

+91 80-4064-9703 | Rest of the world

North America

Mingle, an Agile management and collaboration tool, provides a common
workspace for all team members and an automated system of record for all
projects. Mingle can adapt any existing workflow process and easily
manages daily development activities. Offering true-to-life visibility in the
entire development process for all stakeholders, Mingle helps development
teams become more open and collaborative.

Go is a solution for Agile release management, which enables businesses to
release software on demand. Go improves collaboration between
developers, testers, and operations and provides fast feedback on the
production readiness of your software. Using Go, teams can model the
delivery process, perform push-button deployments, and trace from
deployments back to version control.

Twist, an automated Agile testing solution, provides English-like constructs,
making the testing process more productive for all team members. As
applications grow in complexity, Twist helps to more easily maintain
complex test suites. These suites keep pace with application development
and are held as long-living assets.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

